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Fig. 1: ConceptGraphs builds open-vocabulary 3D scene graphs. We (a) design an object-based mapping system that only assumes
class-agnostic instance masks and fuses them to 3D, (b) interprets and extracts language tags for each mapped instance leveraging large
vision-language models, and (c) builds a graph of object spatial relationships by leveraging priors encoded in large language models. The
object-centric nature of ConceptGraphs allows easy map maintenance and promotes scalability, and the graph structure provides relational
information within the scene. Furthermore, our scene graph representations are easily mapped to natural language formats to interface
with LLMs, enabling them to answer complex scene queries and granting robots access to useful facts about surrounding objects, such
as traversability and utility. We implement and demonstrate ConceptGraphs on a number of real-world robotics tasks across wheeled and
legged mobile robot platforms. (Webpage) (Explainer Video)

Abstract— For robots to perform a wide variety of tasks, they
require a 3D representation of the world that is semantically
rich, yet compact and efficient for task-driven perception
and planning. Recent approaches have attempted to leverage
features from large vision-language models to encode semantics
in 3D representations. However, these approaches tend to
produce maps with per-point feature vectors, which do not
scale well in larger environments, nor do they contain semantic
spatial relationships between entities in the environment, which
are useful for downstream planning. In this work, we propose
ConceptGraphs, an open-vocabulary graph-structured represen-
tation for 3D scenes. ConceptGraphs is built by leveraging 2D
foundation models and fusing their output to 3D by multi-
view association. The resulting representations generalize to
novel semantic classes, without the need to collect large 3D
datasets or finetune models. We demonstrate the utility of this
representation through a number of downstream planning tasks
that are specified through abstract (language) prompts and
require complex reasoning over spatial and semantic concepts.
To explore the full scope of our experiments and results, we
encourage readers to visit our project webpage.

†Project Lead *Equal Contribution

I. INTRODUCTION

Scene representation is one of the key design choices
that can facilitate downstream planning for a variety of
tasks, including mobility and manipulation. Robots need
to build these representations online from onboard sen-
sors as they navigate through an environment. For efficient
execution of complex tasks such representations should
be: scalable and efficient to maintain, as the volume of the
scene and the duration of the robot’s operation increases;
open-vocabulary, not limited to making inferences about a
set of concepts that is predefined at training time, but capable
of handling new objects and concepts at inference time; and
with a flexible level of detail to enable planning over a range
of tasks, from ones that require dense geometric information
for mobility and manipulation, to ones that need abstract
semantic information and object-level affordance information
for task planning. We propose ConceptGraphs, a 3D scene
representation method for robot perception and planning that
satisfies all the above requirements.
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A. Related Work

Closed-vocabulary semantic mapping in 3D. Early
works reconstruct the 3D map through online algorithms like
simultaneous localization and mapping (SLAM) [1]–[5] or
offline methods like structure-from-motion (SfM) [6], [7].
Aside from reconstructing 3D geometry, recent works also
use deep learning-based object detection and segmentation
models to reconstruct the 3D scene representations with
dense semantic mapping [8]–[11] or object-level decompo-
sition [12]–[15]. While these methods achieve impressive
results in mapping semantic information to 3D, they are
closed-vocabulary and their applicability is limited to object
categories annotated in their training datasets.

3D scene representations using foundation models.
There have been significant recent efforts [16]–[30] focused
on building 3D representations by leveraging foundation
models - large, powerful models that capture a diverse set
of concepts and accomplish a wide range of tasks [31]–
[35]. Such models have excelled in tackling open-vocabulary
challenges in 2D vision. However, they require an “internet-
scale” of training data, and no 3D datasets exist yet of a
comparable size. Recent works have therefore attempted to
ground the 2D representations produced by image and lan-
guage foundation models to the 3D world and show impres-
sive results on open-vocabulary tasks, including language-
guided object grounding [17], [18], [24], [26], [36], 3D
reasoning [37], [38], robot manipulation [39], [40] and
navigation [41], [42]. These approaches project dense per-
pixel features from images to 3D to build explicit repre-
sentations such as pointclouds [17]–[21] or implicit neural
representations [16], [22]–[30].

However, such methods have two key limitations. First,
assigning every point a semantic feature vector is highly re-
dundant and consumes more memory than necessary, greatly
limiting scalability to large scenes. Second, these dense
representations do not admit an easy decomposition – this
lack of structure makes them less amenable to dynamic
updates to the map (crucial for robotics).

3D scene graphs. 3D scene graphs (3DSGs) address
the second limitation by compactly and efficiently describ-
ing scenes with graph structures, with nodes representing
objects and edges encoding inter-object relationships [43]–
[47]. These approaches have enabled building real-time sys-
tems that can dynamically build up hierarchical 3D scene
representations [48]–[50], and more recently shown that
various robotics planning tasks can benefit from efficiency
and compactness of 3DSGs [51], [52]. However, existing
work on building 3D scene graphs has been confined to
the closed-vocabulary setting, limiting their applicability to
a small set of tasks.

B. Overview of Our Contribution

In this work, we mitigate all the aforementioned limita-
tions and propose ConceptGraphs, an open-vocabulary and
object-centric 3D representation for robot perception and
planning. In ConceptGraphs, each object is represented as a
node with geometric and semantic features, and relationships

among objects are encoded in the graph edges. At the
core of ConceptGraphs is an object-centric 3D mapping
technique that integrates geometric cues from conventional
3D mapping systems, and semantic cues from vision and
language foundation models [31], [33], [34], [53]–[55]. Ob-
jects are assigned language tags by leveraging large lan-
guage models (LLMs) [32] and large vision-language models
(LVLMs) [55], which provide semantically rich descriptions
and enable free-form language querying, all while using off-
the-shelf models (no training/finetuning). The scene graph
structure allows us to efficiently represent large scenes with a
low memory footprint and makes for efficient task planning.

In experiments, we demonstrate that ConceptGraphs is
able to discover, map, and caption a large number of objects
in a scene. Further, we conduct real-world trials on multiple
robot platforms over a wide range of downstream tasks,
including manipulation, navigation, localization, and map
updates. To summarize, our key contributions are:

• We propose a novel object-centric mapping system that
integrates geometric cues from traditional 3D mapping
systems and semantic cues from 2D foundation models.

• We construct open-vocabulary 3D scene graphs; effi-
cient and structured semantic abstractions for perception
and planning.

• We implement ConceptGraphs on real-world wheeled
and legged robotic platforms and demonstrate a number
of downstream perception and planning capabilities for
complex/abstract language queries.

II. METHOD

ConceptGraphs builds a compact, semantically rich repre-
sentation of a 3D environment. Given a set of posed RGB-D
frames, we run a class-agnostic segmentation model to obtain
candidate objects, associate them across multiple views using
geometric and semantic similarity measures, and instantiate
nodes in a 3D scene graph. We then use an LVLM to caption
each node and an LLM to infer relationships between adjoin-
ing nodes, which results in edges in the scene graph. This
resultant scene graph is open-vocabulary, encapsulates object
properties, and can be used for a multitude of downstream
tasks including segmentation, object grounding, navigation,
manipulation, localization, and remapping. The approach is
illustrated in Fig. 2.

A. Object-based 3D Mapping

Object-centric 3D representation: Given a sequence
of RGB-D observations I = {I1, I2, . . . , It}, Concept-
Graphs constructs a map, a 3D scene graph, Mt = ⟨Ot,Et⟩,
where Ot = {oj}j=1...J and Et = {ek}k=1...K represent
the sets of objects and edges, respectively. Each object oj is
characterized by a 3D point cloud poj and a semantic feature
vector foj . This map is built incrementally, incorporating
each incoming frame It = ⟨I rgb

t , Idepth
t , θt⟩ (color image,

depth image, pose) into the existing object set Ot−1, by
either adding to existing objects or instantiating new ones.

Class-agnostic 2D Segmentation: When processing
frame It, a class-agnostic segmentation model Seg(·)
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Fig. 2: ConceptGraphs builds an open-vocabulary 3D scene graph from a sequence of posed RGB-D images. We use generic instance
segmentation models to segment regions from RGB images, extract semantic feature vectors for each, and project them to a 3D point
cloud. These regions are incrementally associated and fused from multiple views, resulting in a set of 3D objects and associated vision
(and language) descriptors. Then large vision and language models are used to caption each mapped 3D objects and derive inter-object
relations, which generates the edges to connect the set of objects and form a graph. The resulting 3D scene graph provides a structured and
comprehensive understanding of the scene and can further be easily translated to a text description, useful for LLM-based task planning.

is used to obtain a set of masks {mt,i}i=1...M =

Seg(I rgb
t ) corresponding to candidate objects1. Each ex-

tracted mask mt,i is then passed to a visual feature extractor
(CLIP [31], DINO [53]) to obtain a visual descriptor ft,i =

Embed(I rgb
t ,mt,i). Each masked region is projected to 3D,

denoised using DBSCAN clustering, and transformed to
the map frame. This results in a pointcloud pt,i and its
corresponding unit-normalized semantic feature vector ft,i.

Object Association: For every newly detected object
⟨pt,i, ft,i⟩, we compute semantic and geometric similarity
with respect to all objects ot-1,j = ⟨poj , foj⟩ in the map
that shares any partial geometric overlap. The geometric
similarity ϕgeo(i, j) = nnratio(pt,i,poj) is the proportion
of points in point cloud pt,i that have nearest neighbors
in point cloud poj , within a distance threshold of δnn.
The semantic similarity ϕsem(i, j) = fTt,ifoj/2 + 1/2 is the
normalized cosine distance between the corresponding visual
descriptors.2 The overall similarity measure ϕ(i, j) is a sum
of both: ϕ(i, j) = ϕsem(i, j) + ϕgeo(i, j). We perform object
association by a greedy assignment3 strategy where each new
detection is matched with an existing object with the highest
similarity score. If no match is found with a similarity higher
than δsim, we initialize a new object.

Object Fusion: If a detection ot-1,j is associated with
a mapped object oj , we fuse the detection with the map.
This is achieved by updating the object semantic feature as
foj = (noj

foj + ft,i)/(noj
+ 1), where noj

is the number

1Without loss of generality, Seg(·) may be replaced by open-/closed-
vocabulary models to build category-specific mapping systems.

2For the sake of brevity, we only describe the best-performing geometric
and semantic similarity measures. For an exhaustive list of alternatives,
please see our project website and code.

3While we also experimented with optimal assignment strategies such as
the Hungarian algorithm, we experimentally determined them to be slower
and offer only a minuscule improvement over greedy association.

of detections that have been associated to oj so far; and
updating the pointcloud as pt,i ∪ poj , followed by down-
sampling to remove redundant points.

Node Captioning: Once the entire image sequence has
been processed, a vision-language model, denoted LVLM(·),
is used to generate object captions. For each object, the
associated image crops from the best4 10 views are passed
to the language model with the prompt “describe the central
object in the image” to generate a set of initial rough captions
ĉj = {ĉj,1, ĉj,2, . . . , ĉj,10} for each detected object oj .
Each set of captions is then refined to the final caption by
passing ĉj to another language model LLM(·) with a prompt
instruction to summarize the initial captions into a coherent
and accurate final caption cj .

B. Scene Graph Generation

Given the set of 3D objects OT obtained from the previous
step, we estimate their spatial relationships, i.e., the edges
ET , to complete the 3D scene graph. We do this by first
estimating potential connectivity among object nodes based
on their spatial overlaps. We compute the 3D bounding box
IoU between every pair of object nodes to obtain a similarity
matrix (i.e., a dense graph), which we prune by estimating
a minimum spanning tree (MST), resulting in a refined set
of potential edges among the objects. To further determine
the semantic relationships, for each edge in the MST, we
input the information about the object pair, consisting of
object captions and 3D location, to a language model LLM.
The prompt instructs the model to describe the likely spatial
relationship between the objects, such as “a on b” or “b in
a”, along with the underlying reasoning. The model outputs a
relationship label with an explanation detailing the rationale.

4We maintain a running index of the number of noise-free points each
view contributes to the object point cloud.



The use of an LLM allows us to extend the nominal edge
type defined above to other output relationships a language
model can interpret, such as “a backpack may be stored in
a closet” and “sheets of paper may be recycled in a trash
can”. This results in an open-vocabulary 3D scene graph
MT = (OT ,ET ), a compact and efficient representation
for use in downstream tasks.

C. Robotic Task Planning through LLMs

To enable users to carry out tasks described in natural
language queries, we interface the scene graph MT with
an LLM. For each object in OT , we construct JSON-
structured text descriptions that include information about its
3D location (bounding box) and its node caption. Given a text
query, we task the LLM to identify the most relevant object
in the scene. We then pass the 3D pose of this object to the
appropriate pipeline for the downstream task (e.g., grasping,
navigation). This integration of ConceptGraphs with an LLM
is easy to implement, and enables a wide range of open-
vocabulary tasks by giving robots access to the semantic
properties of surrounding objects5 (see Sec. III).

D. Implementation Details

The modularity of ConceptGraphs enables any appro-
priate open/closed-vocabulary segmentation model, LLM,
or LVLM to be employed. Our experiments use Segment-
Anything (SAM) [33] as the segmentation model Seg(·),
and the CLIP image encoder [31] as the feature extrac-
tor Embed(·). We use LLaVA [55] as the vision-language
model LVLM and GPT-4 [32] (gpt-4-0613) for our LLM.
The voxel size for point cloud downsampling and nearest
neighbor threshold δnn are both 2.5cm. We use 1.1 for the
association threshold δsim.

We also develop a variant of our system, ConceptGraphs-
Detector (CG-D), where we employ an image tagging model
(RAM [54]) to list the object classes present in the image
and an open-vocabulary 2D detector (Grounding DINO [34])
to obtain object bounding boxes6. In this variant, we need to
separately handle detected background objects (wall, ceiling,
floor) by merging them regardless of their similarity scores.

III. EXPERIMENTS

A. Scene Graph Construction

We first evaluate the accuracy of the 3D scene graphs
output by the ConceptGraphs system in Table I. For each
scene in the Replica dataset [56], we report scene graph
accuracy metrics for both CG and the detector-variant CG-D.
The open-vocabulary nature of our system makes automated
evaluation of the quality of nodes and edges in the scene
graph challenging. We instead evaluate the scene graph by
engaging human evaluators on Amazon Mechanical Turk
(AMT). For each node, we compute precision as the fraction

5For large scenes where the description length of the scene graph exceeds
the context length of the LLM, one can easily substitute in alternative
(concurrent) LLM planners [52].

6We discard the (often noisy) tags produced by the image tagging model,
relying instead on our node captions.

scene node prec. valid objects duplicates edge prec.

CG

room0 0.78 54 3 0.91
room1 0.77 43 4 0.93
room2 0.66 47 4 1.0
office0 0.65 44 2 0.88
office1 0.65 23 0 0.9
office2 0.75 44 3 0.82
office3 0.68 60 5 0.79
Average 0.71 - - 0.88

CG-D

room0 0.56 60 4 0.87
room1 0.70 40 3 0.93
room2 0.54 49 2 0.93
office0 0.59 35 0 1.0
office1 0.49 24 2 0.9
office2 0.67 47 3 0.88
office3 0.71 59 1 0.83
Average 0.61 - - 0.91

TABLE I: Accuracy of constructed scene graphs: node precision
indicates the accuracy of the label for each node (as measured
by a human evaluator); valid objects is the number of human-
recognizable objects (mturkers used) discovered by our system;
duplicates are the number of redundant detections; edge precision
indicates the accuracy of each estimated spatial relationship (again,
as evaluated by an mturker)

of nodes for which at least 2 of 3 human evaluators deem
the node caption correct. We also report the number of
valid objects retrieved by each variant by asking evaluators
whether they deem each node a valid object. Both CG and
CG-D identify a number of valid objects in each scene, and
incur only a small number (0-5) of duplicate detections. The
node labels are accurate about 70% of the time; most of
the errors are incurred due to errors made by the LVLM
employed (LLaVA [55]). The edges (spatial relationships)
are labeled with a high degree of accuracy (90% on average).

B. 3D Semantic Segmentation

ConceptGraphs focuses on the construction of the open-
vocabulary 3D scene graphs for scene understanding and
planning. For completeness, in this section, we also use
an open-vocabulary 3D semantic segmentation task to eval-
uate the quality of the obtained 3D maps. To generate
the semantic segmentation, given a set of class names, we
compute the similarity between the fused semantic feature
of each object node and the CLIP text embeddings of the
phrase an image of {class}. Then the points asso-
ciated with each object are assigned to the class with the
highest similarity, which gives a point cloud with dense
class labels. In Table II, we report the semantic segmentation
results on the Replica [56] dataset, following the evaluation
protocol used in ConceptFusion [17]. We also provide an
additional baseline, ConceptFusion+SAM, by replacing the
Mask2Former used in ConceptFusion with the more perfor-
mant SAM [33] model. As shown in Table II, the proposed
ConceptGraphs performs comparably with or better than
ConceptFusion, which has a much larger memory footprint.

C. Object Retrieval based on Text Queries

We assess the capability of ConceptGraphs to handle
complex semantic queries, focusing on three key types.

• Descriptive: E.g., A potted plant.



Method mAcc F-mIoU

Privileged
CLIPSeg (rd64-uni) [57] 28.21 39.84
LSeg [58] 33.39 51.54
OpenSeg [59] 41.19 53.74

Zero-shot

MaskCLIP [60] 4.53 0.94
Mask2former + Global CLIP feat 10.42 13.11
ConceptFusion [17] 24.16 31.31
ConceptFusion [17] + SAM [33] 31.53 38.70
ConceptGraphs (Ours) 40.63 35.95
ConceptGraphs-Detector (Ours) 38.72 35.82

TABLE II: Open-vocabulary semantic segmentation on the
Replica [56] dataset. Privileged methods specifically finetune the
pretrained models for semantic segmentation. Zero-shot approaches
do not need any finetuning and are evaluated off the shelf.

• Affordance: E.g., Something to use for temporarily
securing a broken zipper.

• Negation: E.g., Something to drink other than soda.
We evaluate on the Replica dataset [56] and a real-

world scan of the REAL Lab, where we staged a number
of items including clothes, tools, and toys. For Replica,
human evaluators on AMT annotate captions for SAM mask
proposals, which serve as both ground truth labels and
descriptive queries. We created 5 affordance and negation
queries for each scene type (office & room) in Replica and 10
queries of each type for the lab scan, ensuring that each query
corresponds to at least one relevant object. We manually
select relevant objects as ground truth for each query.

We use two object retrieval strategies: CLIP-based and
LLM-based. CLIP selects the object with the highest similar-
ity to the query’s embedding, while the LLM goes through
the scenegraph nodes to identify the object with the most
relevant caption. Table III shows that CLIP excels with
descriptive queries but struggles with complex affordance
and negation queries [61]. For example, CLIP inaccurately
retrieves a backpack for the broken zipper query, whereas the
LLM correctly identifies a roll of tape. The LLM performs
well across the board, but is limited by the accuracy of the
node captions, as discussed in Section III-A. Since the lab
has a larger variety of objects to choose from, the LLM finds
compatible objects for complex queries more reliably there.

D. Complex Visual-Language Queries

To assess the performance of ConceptGraphs in a real-
world environment, we carry out navigation experiments in
the REAL Lab scene with a Clearpath Jackal UGV. The robot
is equipped with a VLP-16 LiDAR and a forward-facing
Realsense D435i camera.

The Jackal needs to respond to abstract user queries and
navigate to the most relevant object (Figure 1). By using
an LVLM [55] to add a description of the current camera
image to the text prompt, the robot can also answer visual
queries. For example, when shown a picture of Michael Jor-
dan and prompted with Something this guy would
play with, the robot finds a basketball.

E. Object Search and Traversability Estimation

In this section, we showcase how the interaction between
the ConceptGraphs representation and an LLM can enable

Dataset Query Type Model R@1 R@2 R@3 # Queries

Replica

Descriptive CLIP 0.59 0.82 0.86 20LLM 0.61 0.64 0.64

Affordance CLIP 0.43 0.57 0.63 5LLM 0.57 0.63 0.66

Negation CLIP 0.26 0.60 0.71 5LLM 0.80 0.89 0.97

Lab

Descriptive CLIP 1.00 – – 10LLM 1.00 – –

Affordance CLIP 0.40 0.60 0.60 10LLM 1.00 – –

Negation CLIP 0.00 – – 10LLM 1.00 – –

TABLE III: Object retrieval from text queries on the Replica and
REAL Lab scenes. We measure the top-1, top-2, and top-3 recall.
CLIP refers to object retrieval using cosine similarity, whereas LLM
refers to having an LLM parse the scene graph and return the most
relevant object.

a mobile robot to access a vast knowledge base of everyday
objects. Specifically, we prompt an LLM to infer two addi-
tional object properties from ConceptGraphs captions: i) the
location where a given object is typically found, and ii) if
the object can be safely pushed or traversed by the Jackal
robot. We design two tasks around the LLM predictions.

Object search: The robot receives an abstract user query
and must navigate to the most relevant object in the Concept-
Graphs map. Using an LVLM [55], the robot then checks if
the object is at the expected location. If not, it queries an
LLM to find a new plausible location given the captions of
the other objects in the representation. In our prompt, we
nudge the LLM to consider typical containers or storage
locations. We illustrate two such queries where the target
object is moved in Figure 3.

Traversability estimation: As shown in Fig. 4, we design
a real-world scenario where the robot finds itself enclaved
by objects. In this scenario, the robot must push around
multiple objects and create a path to the goal state. While
traversability can be learned through experience [62], we
show that grounding LLM knowledge in a 3D map can grant
similar capabilities to robotic agents.

F. Open-Vocabulary Pick and Place

To illustrate how ConceptGraphs can act as the percep-
tion backbone for open-vocabulary mobile manipulation, we
conducted a series of experiments with a Boston Dynamics
Spot Arm robot. Using an onboard RGBD camera and
a ConceptGraphs representation of the scene, the Spot robot
responds to the query cuddly quacker by grabbing a
duck plush toy and placing it in a nearby box (Figure 1). In
the supplementary video, Spot completes a similar grasping
maneuver with a mango when prompted with the query
something healthy to eat.

G. Localization and Map Updates

ConceptGraphs can also be used for object-based lo-
calization and map updates. We showcase this with a 3-
DoF (x, y and yaw) localization and remapping task in
the AI2Thor [63], [64] simulation environment, where a

https://montrealrobotics.ca/
https://montrealrobotics.ca/


Fig. 3: A Jackal robot answering user queries using the ConceptGraphs representation of a lab environment. We first query an LLM to
identify the most relevant object given the user query, then validate with an LVLM if the target object if is at the expected location. If
not, we query the LLM again to find a likely location or container for the missing object. (Blue) When prompted with something
to wear for a space party, the Jackal attempts to find a grey shirt with a NASA logo. After failing to detect the shirt at the
expected location, the LLM reasons that it could likely be in the laundry bag. (Red) The Jackal searches for red and white sneakers after
receiving the user query footwear for a Ronald McDonald outfit. The LLM redirects the robot to a shoe rack after failing
to detect the sneakers where they initially appeared on the map.

Fig. 4: The Jackal robot solving a traversability challenge. All
paths to the goal are obstructed by objects. We query an LLM to
identify which objects can be safely pushed or traversed by the robot
(green) and which objects would be too heavy or hinder the robot’s
movement (red). The LLM relies on the ConceptGraphs node
captions to make traversability predictions and we add the non-
traversable objects to the Jackal costmap for path planning. The
Jackal successfully reaches the goal by going through a curtain and
pushing a basketball, while also avoiding contact with bricks, an
iron dumbbell, and a flower pot.

mobile robot uses a particle filter to localize in a pre-
built ConceptGraphs map of the environment. During the
observation update step of particle filtering, the robot’s
detections are matched against the objects in the map based
on the hypothesized pose, in a similar way as described in
Section II-A. The matching results are aggregated into a
single observation score for weighting the pose hypothesis.
During this process, previously observed objects are removed
if they are not observed by the robot and new objects can also
be added. We provide a demonstration of this localization and
map updating approach in the supplementary video material.

H. Limitations

Despite its impressive performance, ConceptGraphs has
failure modes that remain to be addressed in future work.
First, node captioning incurs errors due to the current limi-
tations of LVLMs like LLaVA [55]. Second, our 3D scene
graph occasionally misses small or thin objects and makes
duplicate detections. This impacts downstream planning, par-
ticularly when the incorrect detection is crucial to planning
success. Additionally, the computational and economic costs
of our system include multiple LVLM (LLaVA [55]) and
one or more proprietary LLM inference(s) when building

and querying the scenegraph, which may be significant.

IV. CONCURRENT WORK

We briefly review recent and unpublished pre-prints that
are exploring themes related to open-vocabulary object-based
factorization of 3D scenes. Concurrently to us, [65], [66]
have explored open-vocabulary object-based factorization of
3D scenes. Where [65] assumes a pre-built point cloud map
of the scene, [66] builds a map on the go. Both approaches
associate CLIP descriptors to the reconstruction, resulting
in performance comparable to our system’s CLIP variant,
which struggles with queries involving complex affordances
and negation, as shown in Table III. OGSV [67] is closer
to our setting, building an open-vocabulary 3D scene graph
from RGB-D images. However, [67] relies on a (closed-set)
graph neural network to predict object relationships; whereas
ConceptGraphs relies on the capabilities of modern LLMs,
eliminating the need to train an object relation model.

V. CONCLUSION

In this paper, we introduced ConceptGraphs, a novel ap-
proach to open-vocab object-centric 3D scene representation
that addresses key limitations in the existing landscape of
dense and implicit representations. Through effective integra-
tion of foundational 2D models, ConceptGraphs significantly
mitigates memory constraints, provides relational informa-
tion among objects, and allows for dynamic updates to the
scene—three pervasive challenges in current methods. Ex-
perimental evidence underscores ConceptGraphs’ robustness
and extensibility, highlighting its superiority over existing
baselines for a variety of real-world tasks including manipu-
lation and navigation. The versatility of our framework also
accommodates a broad range of downstream applications,
thereby opening new avenues for innovation in robot per-
ception and planning. Future work may delve into integrating
temporal dynamics into the model and assessing its perfor-
mance in less structured, more challenging environments.
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APPENDIX

A1. CONTRIBUTION STATEMENT

Qiao Gu, Ali Kuwajerwala, Sacha Morin, and Krishna
Murthy were instrumental in the development, integration,
and deployment of ConceptGraphs. These authors were
responsible for writing the majority of the manuscript.

Qiao spearheaded the implementation of the object-based
mapping, localization and map update system, prototyped the
object captioning module, and conducted the segmentation
experiments.

Ali wrote initial prototypes of the mapping pipeline,
coordinated the real-robot experiments at the REAL Lab,
implemented the integration with the LLM planners and
object retrieval experiments, and performed a significant
amount of the hardware setup.

Sacha was at the forefront of deploying the system on
robot navigation, object search, and led the traversability
experiment, implementing a variety of crucial robot-side
functionalities.

Krishna crafted initial prototypes of the detector-free
mapping system, scene graph construction, and vision/lan-
guage model interfaces, also coordinating the project.

Bipasha Sen and Aditya Agarwal integrated Concept-
Graphs with a robotic manipulation platform for open-
vocabulary pick and place demonstrations, with Kirsty Ellis
assisting them in setting up the manipulation platform.

Corban Rivera and William Paul deployed Concept-
Graphs on-board a Spot mini robot, showcasing the mobile
manipulation capabilities enabled by our system.

Chuang Gan helped qualitatively evaluate our system
against end-to-end learned approaches like 3D-LLM.

Rama Chellappa and Celso de Melo provided adivce on
real-world demonstrations involving mobile manipulation.

Josh Tenenbaum and Antonio Torralba contributed cog-
nitive science and computer vision perspectives respectively,
which shaped the experiments evaluating scene-graph con-
struction accuracy.

Florian Shkurti and Liam Paull provided equal advisory
support on this project, contributing to brainstorming and
critical review processes throughout, and writing/proofread-
ing significant sections of the paper.

A2. 3D SCENE GRAPH: GENERATING NODE CAPTIONS

Once we build an object-level map of the scene using
the methodology described in Sec. II-A, we extract and
summarize captions for each object. We first extract upto the
10 most-informative views for each object, by tracking the

number of (noise-free) 3D points that each image segment
contributes to an object in the map7. Intuitively, these views
offer the best image views for the object. We run each view
through an LVLM, here LLaVA-7B [55], to generate an
image caption. We use the same prompt across all images:
describe the central object in this image.

We found the captions generated by LLaVA-7B to be
incoherent or unreliable across all viewpoints. To alleviate
this, we employed GPT-4 as a caption summarizer, to map
all of the LLaVA-7B captions to a coherent object tag (or
optionally, declare the object as an invalid detection). We use
the following GPT-4 system prompt:
Identify and describe objects in scenes. Input
and output must be in JSON format. The input
field ’captions’ contains a list of image captions
aiming to identify objects. Output ’summary’ as a
concise description of the identified object(s).
An object mentioned multiple times is likely
accurate. If various objects are repeated and
a container/surface is noted such as a shelf or
table, assume the (repeated) objects are on that
container/surface. For unrelated, non-repeating
(or empty) captions, summarize as ’conflicting
(or empty) captions about [objects]’ and set
’object tag’ to ’invalid’. Output ’possible tags’
listing potential object categories. Set
’object tag’ as the conclusive identification.
Focus on indoor object types, as the input captions
are from indoor scans.
Listing 1: GPT-4 system prompt used for caption summarization

A3. LLM PLANNER: IMPLEMENTATION DETAILS

For task planning over 3D scene graphs, we use GPT-
4 (gpt-4-0613) with a context length of 8K tokens8. We
first convert each node in the 3D scene graph into a structured
text format (here, a JSON string). Each entry in the JSON
list corresponds to one object in the scene, and contains the
following attributes:

1) object id: a unique (numerical) object identifier
2) bounding box extents: dimensions of each side of the

bounding cuboid
3) bounding box center: centroid of the object bounding

cuboid
4) object tag: a brief tag describing the object
5) caption: a one-sentence caption (possibly encoding

mode details than present in the object tag
Here is a sample snippet from the scene graph for the

room0 scene of the Replica [56] dataset.
[
{

id: 2,
bbox_extent: [2.0, 0.7, 0.6],
bbox_center: [-0.6, 1.1, -1.2],
object_tag: wooden dresser or chest of drawers,
caption: A wooden dresser or chest of drawers

},

7We track these statistics throughout the mapping lifecycle; meaning that
we do not impose any additional computational overhead to determine the
10 best views per object

8We also prototyped variants of this approach on off-the-shelf LLMs with
larger context lengths, such as Claude-2 with a context length of 32K tokens,
and found it to work reliably.



{
id: 3,
bbox_extent: [0.6, 0.5, 0.4],
bbox_center: [2.8, -0.4, -0.8],
object_tag: vase,
caption: a white, floral-patterned vase (or
possibly a ceramic bowl)

},
...
...
{

id: 110,
bbox_extent: [1.2, 0.6, 0.0],
bbox_center: [2.2, 2.1, 1.2],
object_tag: light fixture,
caption: a light fixture hanging from the
ceiling

}
]

Listing 2: Sample text entries in the 3D scene graph

For planning using the above text description of the scene,
we instantiate the system prompt for GPT-4 as follows:

The input to the model is a 3D scene described in a
JSON format. Each entry in the JSON describes
one object in the scene, with the following
five fields:

1. "id": a unique object id
2. "bbox_extent": extents of the 3D bounding box

for the object
3. "bbox_center": centroid of the 3D bounding box

for the object
4. "object_tag": a brief (but sometimes inaccurate)

tag categorizing the object
5. "caption": a brief caption for the object

Once you have parsed the JSON and are ready to
answer questions about the scene, say "I'm
ready".

The user will then begin to ask questions, and the
task is to answer various user queries about
the 3D scene. For each user question, respond
with a JSON dictionary with the following
fields:

1. "inferred_query": your interpretaion of the user
query in a succinct form

2. "relevant_objects": list of relevant object ids
for the user query (if applicable)

3. "query_achievable": whether or not the user-
specified query is achievable using the objects
and descriptions provided in the 3D scene.

4. "final_relevant_objects": A final list of
objects relevant to the user-specified task. As
much as possible, sort all objects in this
list such that the most relevant object is
listed first, followed by the second most
relevant, and so on.

5. "explanation": A brief explanation of what the
most relevant object(s) is(are), and how they
achieve the user-specified task.

Listing 3: System prompt for the LLM Planner interface

Here are some example GPT-4 responses on our queries

User: I need a quick gift. Help!

LLM-Planner: {
inferred_query: Find suitable object for a gift.,
relevant_objects: [0, 6, 7, 23, 25, 31],
query_achievable: true,
final_relevant_objects: [6],

explanation: The most suitable object for a gift
could be the ceramic vase (id 6). Vases are
commonly gifted items and this one could
potentially be filled with a plant or flower
arrangement, making a lovely present.

}

User: Need something to use as a paperweight

LLM-Planner: {
inferred_query: Find object to use as a paperweight

.,
relevant_objects: [0, 6, 7, 8, 15, 23, 29, 31],
query_achievable: true,
final_relevant_objects: [6],
explanation: The ceramic vase (id 6) could

potentially be used as a paperweight due to its
small size and assumed weight.

}

Listing 4: Sample queries and raw outputs from the LLM Planner

A4. EXAMPLE TEXT QUERIES

Here we provide some of the text queries used in our
experiments.

Replica Dataset Descriptive Queries: For each room, we
randomly selected 20 ground truth annotations collected via
Amazon Mechanical Turk (AMT). Here is a sample from
room0 and office0.
office0 Descriptive Queries:

1) This is a trash can against the wall next to a sofa.
2) A chaise lounge right next to a small table.
3) This is a television.
4) This is a dropped, tiled ceiling in what appears to be a

classroom for children.
5) This is a plant and it is next to the screens.
6) This is the back of a chair in front of a screen.
7) A small table in front of a large gray sectional couch.
8) This is an armless chair and it’s opposite a coffee table

by the sofa.
9) This is a plug-in and it is on the floor.

10) These are table legs and they are underneath the table.
11) These are chairs and they are next to a table.
12) A diner style table in front of two chairs.
13) These are rocks and they are on the wall.
14) This is the right panel of a lighted display screen.
15) This is a planet and it is on the wall.
16) This is an electronic display screen showing a map, on

the wall.
17) This is a couch and it is between a table and the wall.
18) This is a garbage can and it is in front of the wall.
19) This is a rug and it is on the floor.
20) This is a table that is above the floor.
room0 Descriptive Queries:

1) This is a pillow and this is on top of a couch.
2) A pillow on top of a white couch.
3) This is a couch and it is under a window.
4) This is a stool and it is on top of a rug.
5) This is a side table under a lamp.
6) This is a ceiling light next to the window.
7) This is an end table and it is below a lamp.



8) These are books and they are on the table.
9) This is a couch and it is in front of the wall.

10) White horizontal blinds in a well lit room.
11) This is a striped throw pillow on the loveseat.
12) The pillow is on top of the chair.
13) This is a window and it is next to a door.
14) This is a hurricane candle and it is on top of a cabinet.
15) This is a vase and it is on top of the table.
16) This is a vent in the ceiling.
17) This is a fish and it is on top of a cabinet.
18) This is a window behind a chair.
19) This is a trash can against a wall.
20) Two cream colored cushioned chairs with blue pillows

adjacent to each other.
Replica Dataset Affordance Queries for Office Scenes:

1) Something to watch the news on
2) Something to tell the time
3) Something comfortable to sit on
4) Something to dispose of wastepaper in
5) Something to add light into the room

Replica Dataset Affordance Queries for Room Scenes:
1) Somewhere to store decorative cups
2) Something to add light into the room
3) Somewhere to set food for dinner
4) Something I can open with my keys
5) Somewhere to sit upright for a work call

Replica Dataset Negation Queries for Office Scenes:
1) Something to sit on other than a chair
2) Something very heavy, unlike a clock
3) Something rigid, unlike a cushion
4) Something small, unlike a couch
5) Something light, unlike a table

Replica Dataset Negation Queries for Room Scenes:
1) Something small, unlike a cabinet
2) Something light, unlike a table
3) Something soft, unlike a table
4) Something not transparent, unlike a window
5) Something rigid, unlike a rug

REAL Lab Scan Descriptive queries:
1) A pair of red and white sneakers
2) A NASA t-shirt
3) A Rubik’s cube
4) A basketball
5) A toy car
6) A backpack
7) An office chair
8) A pair of headphones
9) A yellow jacket

10) A laundry bag
REAL Lab Affordance Queries:

1) Something to use to disassemble or take apart a laptop
2) Something to use for cooling a CPU
3) Something to use for carrying books day to day
4) Something to use for temporarily securing a broken

zipper

5) Something to use to help a student understand how a
computer works

6) An object that is used in a sport involving rims and nets
7) Something to keep myself from getting distracted by loud

noises
8) Something to help explain math proofs to a student
9) Something I can use to protect myself from the harsh

winter in Canada
10) Something fun to pass the time with

REAL Lab Negation Queries:
1) A toy for someone who dislikes basketball
2) Shoes that you wouldn’t wear to something formal
3) Something to protect me from the rain that’s not an

umbrella
4) Shoes that are not red and white
5) Something to make a cape with that’s not green
6) Something to drink other than soda
7) Something to use for exercise other than weights
8) Something to wear unrelated to space or science
9) Something light to store belongings, not a backpack

10) Something to play with that’s not a puzzle or colorful

A5. NAVIGATION EXPERIMENTS

For our navigation experiments with the Jackal robot. Our
robot is equipped with a VLP-16 lidar and a foward-facing
Realsense D435i camera. We begin by building a pointcloud
of the REAL Lab using the onboard VLP-16 and Open3d
SLAM [68]. The initial Jackal pointcloud does not include
task-relevant objects and is downprojected to a 2D costmap
for navigation using the base Jackal ROS stack.

We then stage two separate scenes with different objects:
one for object search and another for traversability estima-
tion. In both cases, we map the scene with an Azure Kinect
Camera and rely on RTAB-Map [69] to obtain camera poses
and the scene point cloud. We proceed to build a Concept-
Graphs representation and register the scene point cloud with
the initial Jackal map. For our navigation experiments, we
only use the objects OT .

For object search queries, we use the LLM Planner de-
scribed in Section A3 as part of a simple state machine. The
robot first attempts to go look at the 3D coordinates of the
most relevant object identified in OT by the LLM Planner.
We then pass the onboard camera image to LLaVA [55] and
ask if the target object is in view. If not, we remove the
target object from the scene graph and ask the LLM Planner
to provide a new likely location for the object in the scene
with the following GPT-4 system prompt:
The object described as ‘description’ is not in the
scene. Perhaps someone has moved it, or put it
away. Let’s try to find the object by visiting the
likely places, storage or containers that are
appropriate for the missing object (eg: a a cabinet
for a wineglass, or closet for a broom). The new
query is: find a likely container or storage space
where someone typically would have moved the object
described as ‘description’?

Listing 5: GPT system prompt for object localization.

https://montrealrobotics.ca/


For traversability estimation, we task GPT to classify a
given object as traversable or non-traversable based on its
description and possible tags. The system prompt is:
You are a wheeled robot that can push a maximum of
5 pounds or 2.27 kg. Can you traverse through or
push an object identified as ‘description’ with
possible tags ‘possible tags’? Specifically, is it
possible for you to push the object out of its path
without damaging yourself?

Listing 6: GPT-4 system prompt for traversability estimation.

We then take the pointclouds of each non-traversable
objects and downproject them in the Jackal costmap before
launching the navigation episode. The goal is provided in
this case as a specific pose in the room.

For all experiments in this section, we run a local instance
of LLaVA offboard on a desktop when needed and otherwise
use the GPT-4 API for LLM queries.

A6. LIMITATIONS

As indicated in Sec. III-H, there are a few failure modes
of ConceptGraphs that remain to be addressed in subsequent
work. In particular, the LLaVA-7B [55] model used for node
captioning misclassifies a non-negligible number of small
objects as toothbrushes or pairs of scissors. We believe that
using more performant vision-language models, including
instruction-finetuned variants of LLaVA [70] can alleviate
this issue to a large extent. This will, in turn, improve the
node and edge precisions of 3D scene graphs beyond what
we report in Table I.

In this work, we do not explicitly focus on improving
LLM-based planning over 3D scene graphs. We refer the
interested reader to concurrent work, SayPlan [52], for
insights into how one might leverage the hierarchy inherent
in 3D scene graphs, for efficient planning.
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